Skew Domino Schensted Algorithm and Sign-imbalance

نویسنده

  • JANG SOO KIM
چکیده

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalance formula. The generating function gives a method to calculate the generalized sign-imbalance formula. We also extend Sjöstrand’s theorems on sign-imbalance of skew shapes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 SKEW DOMINO SCHENSTED ALGORITHM AND SIGN - IMBALANCE

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

Skew Domino Schensted Algorithm

Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...

متن کامل

On the sign-imbalance of skew partition shapes

Let the sign of a skew standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. We examine how the sign property is transferred by the skew Robinson-Schensted correspondence invented by Sagan and Stanley. The result is a remarkably simple generalization of the ordinary non-skew formula. The sum of the signs of all standard tableaux ...

متن کامل

Growth diagrams, domino insertion and sign-imbalance

We study some properties of domino insertion, focusing on aspects related to Fomin’s growth diagrams [Fom1, Fom2]. We give a self-contained proof of the semistandard domino-Schensted correspondence given by Shimozono and White [SW], bypassing the connections with mixed insertion entirely. The correspondence is extended to the case of a nonempty 2-core and we give two dual domino-Schensted corre...

متن کامل

On Sjöstrand’s Skew Sign-imbalance Identity

The aim of this note is to give a quick derivation of Theorem 1 using the techniques developed in [1] and the skew domino Cauchy identity. Let Gλ/μ(X; q) = ∑ D q spin(D)xweight(D) be the spin-weight generating function of domino tableaux with shape λ/μ; see for example [1]. Here we will use the convention that spin(D) is equal to half the number of vertical dominoes in D. Though not stated expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008